Abstract
In recent years, selective solar absorber surface coating applications have become quite popular in terms of enhancing the thermal performance of solar-thermal systems. Generally, nano-sized particles with high thermal conductivity values are preferred to be utilized in this type of modifications. In this study, nanoparticle-enhanced absorber coating material was applied to a quadruple-pass solar air heater to improve the thermal performance. In this regard, copper oxide nanoparticles with 38-nm average particle size and 32.9 W/m K thermal conductivity were mixed with industrial matte-black paint (2% wt./wt.). The obtained mixture was then applied to the heater and the developed heater has been experimented at three flow rate values. Embedding nanoparticles to the pure paint improved the average thermal conductivity as 0.033 W/m K (from 0.6392 W/m K to 0.6722 W/m K). According to the experimentally attained outcomes, mean thermal efficiency values were obtained in the range of 71.27-79.63%. Improving the flow rate from 0.007 kg/s to 0.013 kg/s enhanced the sustainability index value from 1.1696 to 1.2123. Moreover, maximum instantaneous thermal efficiency was found to be 4.05% higher in comparison with the system without nano-enhanced modification which was tested in a previous work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.