Abstract

ABSTRACT In order to increase the movement of the particles in the annular region of a conical spouted bed, a mechanical stirrer was incorporated. This led to a study of the fluid dynamics of the conical spouted bed of inert particles under different operating conditions: mass of inert particles, ratio of inert particles to suspension volumes, type of stirrer (2 designs) and stirrer speed. The action of the stirrers resulted in increased movement of the particles, especially at low rpm values (≤ 90 rpm), with the loss of the annular region, and thus approaching the beds behavior to that of a fluidized bed. To characterize this novel type of spouted beds, the “minimum spouting flow” (Qms) parameter which is used usually was replaced by the “minimum pseudo-fluidizing flow” (Qmpr). The value of Qmpf decreases when the agitation in the bed increases. A correlation for Qmpf with the different operating conditions was developed. Drying suspensions in the stirred spouted bed shows a considerable increase of drying capacity, over units without agitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call