Abstract

Mass storage systems (MSSs) play a key role in data-intensive parallel computing. Most contemporary MSSs are implemented as redundant arrays of independent/inexpensive disks (RAID) in which commodity disks are tied together with proprietary controller hardware. The performance of such systems can be difficult to predict because most internal details of the controller behavior are not public. We present a systematic method for empirically evaluating MSS performance by obtaining measurements on a series of RAID configurations of increasing size and complexity. We apply this methodology to a large MSS at Ohio Supercomputer Center that has 16 input/output processors, each connected to four 8 + 1 RAID5 units and provides 128 TB of storage (of which 116.8 TB are usable when formatted). Our methodology permits storage-system designers to evaluate empirically the performance of their systems with considerable confidence. Although we have carried out our experiments in the context of a specific system, our methodology is applicable to all large MSSs. The measurements obtained using our methods permit application programmers to be aware of the limits to the performance of their codes. Copyright © 2006 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.