Abstract

Diode ideality factors much higher than the expected values of 1.0 to 2.0 have been reported in GaN-based p-n junctions. It is shown that moderately doped unipolar heterojunctions as well as metal-semiconductor junctions, in particular the metal contact to p-type GaN, can increase the ideality factor to values greater than 2.0. A relation is derived for the effective ideality factor by taking into account all junctions of the diode structure. Diodes fabricated from a bulk GaN p-n junction and a p-n junction structure with a p-type AlGaN/GaN superlattice display ideality factors of 6.9 and 4.0, respectively. These results are consistent with the theoretical model and the fact that p-type AlGaN/GaN superlattices facilitate the formation of low-resistance ohmic contacts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.