Abstract
Radioactive wastes contain organic complexing agents that can form complexes with radionuclides and enhance the solubility of these radionuclides, increasing the mobility of radionuclides over great distances from a radioactive waste repository. In this study, four radionuclides (cobalt, strontium, iodine, and uranium) and three organic complexing agents (ethylenediaminetetraacetic acid, nitrilotriacetic acid, and iso-saccharic acid) were selected, and the solubility of these radionuclides was assessed under realistic environmental conditions such as different pHs (7, 9, 11, and 13), temperatures (10 °C, 20 °C, and 40 °C), and organic complexing agent concentrations (10−5–10−2 M). A total of 720 datasets were generated from solubility batch experiments. Four supervised machine learning models such as the Gaussian process regression (GPR), ensemble-boosted trees, artificial neural networks, and support vector machine were developed for predicting the radionuclide solubility. Each ML model was optimized using Bayesian optimization algorithm. The GPR evolved as a robust model that provided accurate predictions within the underlying solubility patterns by capturing the intricate relationships of the independent parameters of the dataset. At an uncertainty level of 95%, both the experimental results and GPR simulated estimations were closely correlated, confirming the suitability of the GPR model for future explorations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.