Abstract

Its primary purpose of this study is to provide a comprehensive investigation on its dynamic performance of MR damper under high impact load. A test had been firstly done in order to identify its high shear viscosity of MR fluid. Then, its thermal performance of MR damper under high impact load is analyzed in order to aid its structure design of MR damper intended for weapon recoil mechanisms applications and improve its performance of elimination of heat. Further, Experimental analysis and performance evaluation of MR damper under impact load have been done by numerical simulation and hardware-in-the-loop simulation, including its acceleration response and pressure response of back cavity under different flow coefficient and the same inputting current, and its acceleration response and pressure response of back cavity under the same flow coefficient and different inputting current. Based on these simulation results, the shear-thinning phenomena and its dynamic response under saturated input current are analyzed and some useful conclusions are made. Finally, experimental results indicated that the developed MR damper under high impact load can achieve a good controllability for recoil applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call