Abstract

ABSTRACTPolymer laser sintering (LS) is an important additive manufacturing (AM) technology. Individual and complex parts are directly produced from CAD data without the need of specific tools. The raw material is a polymer powder, which is deposited layerwise and melted selectively with a laser. Built parts are embedded in residual unmolten powder, the so‐called part cake, which undergoes thermal ageing effects due to the exposure to high temperatures for long times during the manufacturing process. Hence, the recyclability of the unmolten powder is limited. This article focuses on a fundamental analysis of the ageing kinetics dependent on time, temperature, and oxygen content in the gas atmosphere. A model is developed and applied to measured, position‐dependent process temperature histories to successfully predict the ageing distribution within a part cake. The results can be used to optimize the thermal process management in LS and to develop new efficient powder recycling methods. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45435.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.