Abstract

A laboratory fuel cell system based on a 20 kW H2/air proton exchange membrane stack was designed, realized and characterized with the aim to elucidate specific concerns to be considered for both hydrogen stationary power systems and automotive applications. The overall system characterization permitted the effect of the main operative variables (temperature, pressure and stoichiometric ratio) on stack power and efficiency to be evaluated. Reactant feeding, humidification and cooling problems are discussed, evidencing in particular the roles of air compressor, fuel purge, stack temperature and humidification strategy in system management. The characterization results are analyzed in terms of H2 consumption and available power, evidencing the energy losses of the individual fuel cell system components. In particular, the data obtained on key components (stack, reactants, heat and water management devices) are used for a critical discussion about their specifications and operation characteristics as demanded by both stationary and mobile applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.