Abstract

Sandwich panel composites have several applications in material technology. The sandwich panel composite material is constructed of stainless steel-316 for the top and bottom plates, aluminum 1050A-0 for the core, and DP-8405 acrylic adhesive for the binding element. The impact behavior of S-core composite sandwich panels was examined using low-velocity drop impact tests and finite element models. Finite element models have been created to characterize the influence of composite element bending behavior on variations. The specific flexural modulus and strength of composite S-core sandwich structures are equivalent to those found in the literature for core structures. As a result, the minimum weight design served as a guideline for producing weight and density-efficient hybrid composite sandwich panels. The energy absorbed in the test findings rose between 15.15% and 30% as the core thickness grew and between 3.571% and 41.34% as the core arrays changed. Impact load-bearing capability increases with varied core heights and array designs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call