Abstract

New generation HEV (hybrid electric vehicles) are targeting for reducing exhaust gas pollution by operating in EV (electric vehicle) mode during the stop and go movement in thick traffic conditions at low engine rpm, but run on ICE (Internal Combustion engine) mode at cruising speed on highways. While new Hybrid car concepts are being developed internationally, existing Gasoline and Diesel powered conventional ICE vehicles will be guzzling unwanted pollutants for rest of their life, adding to the menace of global warming. To address the need for conservation of fuel and reducing production of harmful pollutants by millions of cars driven world over, an experimental research work was carried out in the field of conversion of existing diesel or petrol cars in to HEV. Main objective of the research is to reduce consumption of fossil fuel, for preserving it for future generation.An existing 1400 CC Diesel car converted in to experimental HEV prototype has been tested in EV mode at reasonably steady speed on highway and conventional ICE mode, to measure the consumption of fuel to derive the optimum performance benefits. Test results show marked improvement in fuel consumption, when driven in EV mode (for distance covered with single charge) against ICE mode. Amount of fuel saving achieved by proposed HEV methodology deployed for conversion of existing vehicles contributes in equivalent reduction in total quantity of harmful exhaust emission pollutants.The conversion process has been simplified, for implementation on existing cars and new model design of cars with engine capacity higher or lower than 1400 cc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.