Abstract

Retrieving cohesive subgraphs in networks is a fundamental problem in social network analysis and graph data management. These subgraphs can be used for marketing strategies or recommendation systems. Despite the introduction of numerous models over the years, a systematic comparison of their performance, especially across varied network configurations, remains unexplored. In this study, we evaluated various cohesive subgraph models using task-based evaluations and conducted extensive experimental studies on both synthetic and real-world networks. Thus, we unveil the characteristics of cohesive subgraph models, highlighting their efficiency and applicability. Our findings not only provide a detailed evaluation of current models but also lay the groundwork for future research by shedding light on the balance between the interpretability and cohesion of the subgraphs. This research guides the selection of suitable models for specific analytical needs and applications, providing valuable insights.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.