Abstract

This study aims to quantify and develop a deeper understanding of the parameters that underpin the development of a new, predictive, microscopic model of pedestrian movement with the potential to accurately reflect the complexity of flow dynamics now and into the future. It presents the results and analyses of two single file experiments designed to quantify the physical space taken up by the extent of a person’s stepping movement (maximum step extent) and the minimum distance between points of inter-person contact (contact buffer) across a range of walking speeds.The experiments successfully used high-resolution optical motion capture and enhanced video analysis to quantify the dynamic changes in gait and spatial parameters, which were manifested as overlapping steps, and changes to step extent, step length, step frequency, and contact distance. The sum of the step extent and contact buffer, at different speeds, was found to be within a few centimetres of the inter-person distance (headway), leading to the conclusion that these parameters are therefore key components for the derivation of inter-person spacing and, hence, overall crowd movement. The work informs the longer term aim of developing the mathematical model which has the potential to include pedestrian demographics, walking ability and cognitive capabilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.