Abstract

This paper describes experimental analyses using the SIMMER-III computer code, which is a two-dimensional multi-component multi-phase Eulerian fluid-dynamics code. Two topics of key phenomena in core disruptive accidents were presented in this paper: debris-bed coolability and metallic fuel freezing behavior. Related experimental database were reviewed to choose suitable experiments. To analyze the debris-bed coolability, the ACRR-D10 in-pile experiments were selected. SIMMER-III well simulated the heat transfer mechanisms including conduction, boiling and channeling observed in the experiment. Metallic fuel may freeze onto the stainless steel (cladding or wrapper tube) together with eutectic formation during core disruption in a metallic-fueled reactor. The CAFE-UT2 experiment carried out using pure UO2 melt to investigate such phenomena was selected for the experimental analysis. In spite of no eutectic formation model in the SIMMER-III code, the calculated fuel penetration behavior was in good agreement with the experimental data.Copyright © 2010 by ASME

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.