Abstract
This study investigates the corrosion inhibition potential of Polygonum cuspidatum root extract (PCRE) on mild steel in a 0.5M HCl acidic environment. Herein, various techniques including electrochemical and gravimetric measurements were employed, along with scanning electron microscopy (SEM) and contact angle (CA) measurements for surface morphology analysis. The impedance study revealed a concentration-dependent enhancement in corrosion resistance, classifying PCRE as a mixed-type inhibitor (i.e., inhibits both anodic and cathodic reactions). The highest efficiency, 96.71% at 298K, was observed at a 1000-ppm PCRE concentration. Langmuir model computations suggested chemisorption and physisorption of PCRE on the electrode substrate. Increased Rp (from 28.648 to 174.01 Ω) and Rct (185.74 Ω cm2) at 1000ppm demonstrated improved corrosion resistance. Additionally, SEM analysis displayed a uniform, protective surface, reducing metal degradation. Theoretical calculations highlighted strong interactions between PCRE and mild steel, with a low energy gap (ΔE), as follows: 1-O-methylemodin (2.267eV) < emodin (2.288eV) < emodin-1-O-glucoside (2.343eV) < piceid (2.931eV) < resveratrol (2.952eV), confirming PCRE's excellent micro-level anti-corrosion capabilities. This eco-benign corrosion inhibitor offers sustainable, low-toxicity protection, cost-effectiveness, and versatile performance, surpassing commercial counterparts while aligning with sustainability goals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.