Abstract

The work presented in this paper concerns the first compression wave generated in a tunnel when a high-speed train enters it. This wave is the first of successive compression and expansion waves which propagate back and forth in the tunnel. Once generated at the tunnel entrance, its amplitude and gradient vary according to the train and tunnel characteristics. These waves provoke: (a) an aural discomfort for train passengers, (b) mechanical stresses on train and tunnel structures, and (c) emission of impulsive noises outside the tunnel. A reduced-scale test method, using low-sound-speed gas mixtures, has been developed and validated by using newly available European full-scale test-results. It can reproduce quite well the three-dimensional effects due to the train geometry and its position in the tunnel. The study also clearly points out that three-dimensional effects on the front of the first compression wave are attenuated with distance from the tunnel entrance and that the wave front can be considered well established and planar for distances larger than four times the tunnel diameter. Characteristics of the planar wave are in good agreement with Japanese results. The reduced-scale train Mach number has been extended up to 0.34 to determine its test domain. Our study clearly shows that, as far as the characteristics of the wave front of well-established planar first compression wave are concerned, axially symmetrical models can advantageously replace three-dimensional models, provided that the longitudinal cross-sectional area profile is the same for both configurations. This feature yields the following train nose design procedure: first determine the cross-sectional profile of a train nose against train–tunnel interactions by means of axially symmetrical configuration, then give a three-dimensional shape for drag and stability optimisation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call