Abstract

BackgroundThe aim of the present study was to explore the biodistribution, normal tissue toxicity, and therapeutic efficacy of the internalizing low-dose rate alpha-particle-emitting radioimmunoconjugate 227Th-trastuzumab in mice with HER2-expressing breast cancer xenografts.MethodsBiodistribution of 227Th-trastuzumab and 227Th-rituximab in nude mice bearing SKBR-3 xenografts were determined at different time points after injection. Tumor growth was measured after administration of 227Th-trastuzumab, 227Th-rituximab, cold trastuzumab, and saline. The toxicity of 227Th-trastuzumab was evaluated by measurements of body weight, blood cell, and clinical chemistry parameters, as well as histological examination of tissue specimens.ResultsThe tumor uptake reached peak levels of 34% ID/g (4.6 kBq/g) 3 days after injection of 400 kBq/kg of 227Th-trastuzumab. The absorbed radiation dose to tumor was 2.9 Gy, while it was 2.4 Gy to femur due to uptake of the daughter nuclide 223Ra in bone; the latter already explored in clinical phases I and II trials without serious toxicity. A significant dose-dependent antitumor effect was observed for dosages of 200, 400, and 600 kBq/kg of 227Th-trastuzumab but no effect of 400 and 600 kBq/kg 227Th-rituximab (non-tumor binding). No serious delayed bone marrow or normal organ toxicity was observed, but there was a statistical significant reduction in blood cell parameters for the highest-dose group of 227Th-trastuzumab treatment.ConclusionInternalizing 227Th-trastuzumab therapy was well tolerated and resulted in a dose-dependent inhibition of breast cancer xenograft growth. These results warrant further preclinical studies aiming at a clinical trial in breast cancer patients with metastases to bone.

Highlights

  • The aim of the present study was to explore the biodistribution, normal tissue toxicity, and therapeutic efficacy of the internalizing low-dose rate alpha-particle-emitting radioimmunoconjugate 227Th-trastuzumab in mice with HER2-expressing breast cancer xenografts

  • There was a large difference between the amount of activity in tumor and in normal organs for 227Th-trastuzumab

  • The uptake of non-tumor binding 227Th-rituximab (Figure 1b) in tumor was significantly lower than the uptake of 227Th-trastuzumab (Figure 1a)

Read more

Summary

Introduction

The aim of the present study was to explore the biodistribution, normal tissue toxicity, and therapeutic efficacy of the internalizing low-dose rate alpha-particle-emitting radioimmunoconjugate 227Th-trastuzumab in mice with HER2-expressing breast cancer xenografts. The human epidermal growth factor receptor-2 (HER-2/neu) is a transmembrane receptor tyrosine kinase that is over-expressed in 25% to 30% of metastatic breast cancers and associated with more aggressive disease [2]. No alpha-emitting radioimmunoconjugate (RIC) has reached phase III clinical trial yet due to poor physical or chemical characteristics, supply limitations, and high production costs for the most promising alpha emitters [4]. We have suggested 227Th as a novel radionuclide for alpha-particle radioimmunotherapy (RIT), as this radionuclide can be produced in clinically relevant amounts from b-decay of the long-term generator 227Ac [5,6]. The yield of 227Ac after purification is relatively high and 226Ra is highly available, making the process cost efficient. 227Ac has a half-life of 21.8 years and would serve as a generator nuclide for 227Th production for decades [7]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.