Abstract
The rapid performance improvement of photovoltaic/thermal (PV/T) implies great potential application to various aspects of society. The previously developed micro heat pipe PV/T by our team has shown favorable cogeneration of electricity and heat in cold regions, while it is badly needed to improve its comprehensive performance by enhancement of heat transfer. For same working fluid as HCFC141b in micro heat pipe, higher Reynolds Number (Re) theoretically means better heat transfer. Therefore, two available micro heat pipes were developed with trapezoidal cross section and rectangular cross section respectively while with same cross section area and applied in two micro heat pipe PV/T systems. Subsequent experiment study testifies that the rectangular micro heat pipe PV/T of higher theoretical Re verily shows more favorable performance than the trapezoidal micro heat pipe PV/T when they are at 45° inclination angle. Deducting power consumption of circulating pump, the average electrical efficiency of rectangular micro heat pipe PV/T system is 12.4%, while that of trapezoidal micro heat pipe PV/T system is 11.9%. Moreover, the thermal efficiency, total energy power, and total energy efficiency of rectangular micro heat pipe PV/T system are respectively 28.1%, 472.3 W, and 40.5%, which are 10.1%, 119.8 W, and 10.8% higher than those of trapezoidal micro heat pipe PV/T system. The results are significant and valuable for the application of micro heat pipe PV/T in cold regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.