Abstract
Downhole drilling tool vibration measurement is crucial for drilling exploration safety, so real-time monitoring of vibration data is required. In this research, a honeycomb triboelectric nanogenerator (H-TENG) capable of adapting to various downhole environments is proposed. It can measure the frequency of downhole drilling equipment’s vibrations and transfer mechanical energy to electrical energy for use in powering other low power downhole meters. In order to preliminarily verify the possibility of sensors used for vibration measurement of downhole drilling tools, we built a simulated vibration platform to test the sensing performance and vibration energy collection performance of H-TENG. According to the testing results, the measurement range of vibration frequency and amplitude are 0 to 11 Hz and 5 to 25 mm, respectively, and the corresponding measurement errors are less than 5% and 6%, respectively. For vibrational energy harvesting, when four sensors are wired in series with a 107 resistance, the maximum power is approximately 1.57 μW. Compared to typical methods for measuring downhole vibration, the honeycomb triboelectric nanogenerator does not need an external power source, it has greater reliability and output power, and it can vary its shape to adapt to the complicated downhole environment. In addition, the H-TENG can be combined freely according to the diameter of the drill string, and even if one sensor unit is damaged, the other units can still be used normally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.