Abstract

The internal-mixing twin-fluid atomizer has found wide application in aerospace, industrial gas turbine, oil-fired boiler, energy field and so on. The atomization characteristics of internal mixing nozzle under different operating conditions are studied by utilizing the Malvern laser particle size analyzer. According to the experiment results, the influence of air pressure, hydraulic pressure and air-liquid ratio to droplet size and uniformity are analyzed. The three-dimensional flow field model of internal mixing nozzle is built to simulate the droplet size of mixing room and outlet by Fluent. The simulation results show that the droplet size decreases along with the increase of the air pressure and the air-liquid ratio, moreover, the air pressure plays a main actor. The droplet size increases in the mixing room, and then decrease sharply at the domain of the outlet. The droplet size of the nozzle’s outlet obtained in simulation matches the experimental result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.