Abstract
Purpose This paper aims to research the tribological and dynamic characteristics of aeroengine hybrid ceramic bearings through wear experiments and simulation analysis. Design/methodology/approach First, the authors carried out wear experiments on Si3N4–GCr15 and GCr15–GCr15 friction pairs through the ball-disc wear test rig to explore the tribological properties of their materials. Second, using ANSYS/LS-DYNA simulation software, the dynamic simulation analysis of hybrid bearings was carried out under certain working conditions, and the dynamic contact stress of all-steel bearings of the same size was simulated and compared. Finally, the change of the maximum contact stress of the main bearing under the change of load and rotation speed was studied. Findings The results show that the Si3N4–GCr15 pair has better tribological performance. At the same time, under the conditions of high speed and heavy load, the simulation analysis shows that the contact stress between the ceramic ball and the raceway of the ring is smaller than the steel ball. That is, hybrid bearings have better transient mechanical properties than all-steel bearings. With the speed increasing to 12,000 r/min, the maximum stress point will shift in the inner and outer rings. Originality/value In this study, the tribological and transient mechanical properties of Si3N4 material were comprehensively analyzed through wear experiments and dynamic simulation analysis, which provided a reference for the design of hybrid bearings for next-generation aeroengines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.