Abstract

Vibratory compaction of bridge deck pavement impacts the structural integrity of bridges to certain degrees. In this study, we analyzed the dynamic response of different types of concrete-beam bridges (continuous beam and simply supported beam) with different cross-sectional designs (T-beam and hollow-slab beam) under vibratory compaction of bridge deck asphalt pavement. The dynamic response patterns of the dynamic deformation and acceleration of bridges under pavement compaction were obtained by performing a series of field experiments and a three-dimensional finite element simulation. Based on the finite element model, the dynamic responses of bridge structures with different spans and cross-sectional designs under different working conditions of vibratory compaction were analyzed. The use of different vibration parameters for different bridge structures was proposed to safeguard their structural safety and reliability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.