Abstract

To achieve a high current density and a compact REBCO coil, a reinforcing structure is essential to prevent coil degradation and deformation caused by the large Lorentz force. A new reinforcing structure for the REBCO coil called the Y-based oxide superconductor and reinforcing outer integrated (YOROI) coil was proposed in the previous study. The YOROI coil, which exhibited no degradation after an excitation test with a maximum hoop stress of 1.7 GPa at 4.2 K in 8-T backup fields, has great ability to reduce the stress and strain acting on the coil winding to maintain the coil shape and prevent degradation in the REBCO wire. In this study, the hoop stress in the winding and the stress shared by the reinforcing structure of a YOROI model coil were measured at 40 K in 10-T backup fields to clarify the reinforcing mechanism of the YOROI coil. A three-dimensional structural analysis, which simulated the experimental condition, was performed on the model coil to determine the distribution of stress and strain in the winding and reinforcing structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.