Abstract

An advanced ozone membrane reactor that uses membranes for ozone distribution, reaction contact and selective water separation was used for ozone treatment of a recalcitrant endocrine disrupting compound in water. Experiments and model calculation were employed to examine the ozonation of phthalate in the new reactor. Experimental results showed that fast ozone mass transfer rate is responsible for membrane reactor's superb performance compared with a semibatch reactor. Selective water removal further enhanced phthalate conversion and TOC removal by concentrating the pollutants in the reaction zone. Clean water was produced by membrane separation. Mathematical model was used to investigate the effect of membranes, reactor design and reaction operation on pollutant conversion and removal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.