Abstract

The experimental behaviour of plasma instabilities in high-current discharges is found to be in good agreement with the predictions of linear and nonlinear magnetohydrodynamic theory. Observations show that on time-scales comparable with the Alfven transit time there are rapidly growing ideal magnetohydrodynamic perturbations whereas experiments on longer time-scales show the growth and saturation of resistive instabilities which involve changes in field line topology. The plasmas are observed to exhibit self-control mechanisms which are related to the relaxation of configurations to states of lower magnetic energy. Rapid magnetic field line reconnection phenomena, as in solar flares, are observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.