Abstract
Abstract Pigging techniques are widely used in the oil and gas industry. The unsteady motion of the PIG in an undulating pipe section during the pigging process after a water pressure test affects the stable operation of the pipeline and also causes a pipe rupture accident in serious cases. First, an experimental study was conducted to investigate the pigging process of air–water two phase pipe flows, and the PIG reverse movement and hydraulic pulse phenomenon were observed. Subsequently, a hydraulic transient model of the pigging process after a water pressure test was established in a dual-grid system. The model combined mass and motion equations of gas and liquid and PIG dynamic equations, considered three types of PIG motion states, namely positive movement, reverse movement and still, and used the method of characteristics to solve the equations. The model exhibits the ability for PIG tracing and hydraulic pulse prediction. It can be used to obtain the position and speed of the PIG. Finally, the field data and simulation results were compared, and the results indicated that they are essentially identical. This verified the accuracy of the model that is established in this study and the reliability of computed results and provided a reliable and effective theoretical basis for the development of field pigging plans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Chemical Reactor Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.