Abstract
An external liquid circulation is introduced into a traditional internal loop reactor in order to improve liquid circulation and increase the interface between gas and liquid phases. The effects of superficial gas velocity and external liquid circulation velocity on local and overall gas holdups are explored experimentally and numerically in the loop section of a combined gas-liquid contactor, which consists of a liquid spray, sieve plates and an internal loop with external liquid circulation. Local gas holdup is measured experimentally by a double-sensor conductivity probe. Numerical simulations are conducted in the platform of a commercial software package, ANSYS CFX 10.0. Gas holdup and other information are obtained by solving the governing equations of mass and momentum balances for gas and liquid phases in a hybrid mesh system. Both measured and simulated results indicate that local, section-averaged, and overall gas holdups increase with an increase of the superficial gas velocity. The downcomer tube for circulating external liquid has a significant influence in the gas-distributor and the downcomer-tube action regions rather than in the upper draft-tube and the gas-liquid separation regions. Good agreement between measured and predicted data suggests that CFD simulation together with experimental investigation can be employed to develop novel gas-liquid contactors with a complex geometrical configuration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Chemical Reactor Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.