Abstract
A series of cyclic triaxial tests were conducted on marine soft clay deposits to establish and validate a predictive model for cumulative plastic strain. Additionally, a numerical model of particle flow code in cyclic triaxial tests was developed. The effects of confining pressure, moisture content, and dynamic stress ratio on the dynamic properties of marine soft clay were examined, considering factors such as volume deformation and microscopic failure patterns. The results indicated that both the predictive model and numerical model showed strong consistency with the experimental data. The plastic strain of marine soft clay was influenced by moisture content, stress ratio, and confining pressure in a consistent manner, with moisture content being the primary factor. A predictive model for the cumulative plastic strain of marine soft clay was successfully established, allowing for the evaluation of dynamic properties from the perspective of cumulative plastic strain. During the loading process in the numerical model, microcracks within the soil structure gradually compacted, and the main displacement of the specimen extended from the vertical center axis to the sides, ultimately resulting in shear damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.