Abstract

Due to volume change and low strength, fine-grained soils are problematic in construction. Stabilization with cement and sawdust ash (SDA) by-products can improve engineering properties. This study aimed to investigate the effectiveness of cement and sawdust ash (SDA) in stabilizing fine-grained soils for liner applications. Varying proportions of cement (0-9%) and SDA (0-10%) were added to soil samples (n = 24). Specimens were tested for unconfined compressive strength (UCS), hydraulic conductivity (HC), and volumetric shrinkage strain (VSS). Two-way ANOVA analyzed stabilization effects. Optimal stabilization occurred with 6% cement and 6% SDA, resulting in significant increases in UCS (51 to 375 kN/m2) and decreases in HC (1.7 × 10-8 to 4.7 × 10-10 m/s) and VSS (12.8 to 3.51%) compared to untreated soil. ANOVA indicated that both cement and SDA had statistically significant (p < 0.05) effects on improving all three engineering properties. The addition of 6% cement and 6% SDA significantly improved the expansive soil's strength, hydraulic conductivity, and volume change properties. ANOVA confirmed the quantitative improvements and the significance of both stabilizers. Stabilization using the by-product SDA has the potential to be a sustainable soil improvement method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call