Abstract

We present an experimental technique along with the method of data analysis to give nondegenerate two-photon absorption (2PA) spectra. We use a femtosecond pump pulse and a white-light continuum (WLC) probe to rapidly generate the 2PA spectra of a variety of materials. In order to analyze data taken with this method, the spectral and temporal characteristics of the WLC must be known, along with the linear dispersion of the sample. This allows determination of the temporal walk-off of the pump and probe pulses as a function of frequency caused by group-velocity mismatch. Data correction can then be performed to obtain the nonlinear losses. We derive an analytical formula for the normalized nonlinear transmittance that is valid under quite general experimental parameters. We verify this on ZnS and use it for the determination of 2PA spectra of some organic compounds in solution. We also compare some of the data on organics with two-photon fluorescence data and find good agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.