Abstract

The onset of vision occurs when neural circuits in the visual cortex are immature, lacking the full complement of connections1,2 and the response selectivity that defines functional maturity3,4. Direction selective responses are particularly vulnerable to the effects of early visual deprivation, but how stimulus driven neural activity guides the emergence of cortical direction selectivity remains unclear. To explore this issue we developed a novel motion training paradigm that allowed us to monitor the impact of experience on the development of direction selective responses in visually naïve ferrets. Using intrinsic signal imaging techniques we found that training with a single axis of motion induced the rapid emergence of direction columns that were confined to cortical regions preferentially activated by the training stimulus. Using 2-photon calcium imaging techniques, we found that single neurons in visually naïve animals exhibited weak directional biases and lacked the strong local coherence in the spatial organization of direction preference that was evident in mature animals. Training with a moving stimulus, but not with a flashed stimulus, strengthened the direction selective responses of individual neurons and preferentially reversed the direction biases of neurons that deviated from their neighbors. Both effects contributed to an increase in local coherence. We conclude that early experience with moving visual stimuli drives the rapid emergence of direction selective responses in visual cortex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call