Abstract
In earlier research we proposed an “experience-weighted attraction (EWA) learning” model for predicting dynamic behavior in economic experiments on multiperson noncooperative normal-form games. We showed that EWA learning model fits significantly better than existing learning models (choice reinforcement and belief-based models) in several different classes of games. The econometric estimation in that research adopted a representative agent approach and assumed that learning parameters are stationary across periods of an experiment. In addition, we used the logit (exponential) probability response function to transform attraction of strategies into choice probability. This paper allows for nonstationary learning parameters, permits two “segments” of players with different parameter values in order to allow for some heterogeneity, and compares the power and logit probability response functions. These specifications are estimated using experimental data from weak-link and median-action coordination games. Results show that players are heterogeneous and that they adjust their learning parameters over time very slightly. Logit probability response functions never fit worse than power functions, and generally fit better.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.