Abstract

This paper presents the results of an experimental study of the dynamics of evaporation of nanofluid droplets based on distilled water with a mass concentration of SiO2 nanoparticles of 0.1%, 0.5%, and 7% lying on a metal surface. The drop height was changed over time using original equipment, which is based on an integrated approach to the combined use of capacitive and optical recording methods. The experimental results show that the change in the height of nanofluid droplets with concentrations of 0.1%, 0.5%, and 7% is linear over the main part of the evaporation time interval. A deviation from the linear law is observed at the final stage, at the time interval of complete evaporation. The time for complete evaporation of droplets of nanofluids with a concentration of 0.1% increases by 20%, for droplets with a concentration of 0.5%, it increased by 28% in comparison with the evaporation of droplets of the base liquid. The particle concentration of 7% does not lead to an increase in the evaporation time of droplets in comparison with the evaporation of low concentration droplets. Before the formation of a jelly-like residue of nanoparticles, the evaporation rate of droplets with a particle concentration of 7% is comparable to the evaporation rate of droplets with a concentration of 0.1%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call