Abstract

Critical path selection is an indispensable step for AC delay test and timing validation. Traditionally, this step relies on the construction of a set of worse-case paths, based upon discrete timing models. However, the assumption of discrete timing models can be invalidated by timing defects and process variation in the deep sub-micron domain, which are often continuous in nature. As a result, critical paths defined in a traditional timing analysis approach may not be truly critical in reality. In this paper, we propose using a statistical delay evaluation framework for estimating the quality of a path set. Based upon the new framework, we demonstrate how the traditional definition of a critical path set may deviate from the true critical path set in the deep sub-micron domain. To remedy the problem, we discuss improvements to the existing path selection strategies by including new objectives. We then compare statistical approaches with traditional approaches based upon experimental analysis of both defect-free and defect-injected cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.