Abstract

Thermal imaging is an important source of information for geographic information systems (GIS) in various aspects of environmental research. This work contains a variety of experiences related to the use of the Yuneec E10T thermal imaging camera with a 320 × 240 pixel matrix and 4.3 mm focal length dedicated to working with the Yuneec H520 UAV in obtaining data on the natural environment. Unfortunately, as a commercial product, the camera is available without radiometric characteristics. Using the heated bed of the Omni3d Factory 1.0 printer, radiometric calibration was performed in the range of 18–100 °C (high sensitivity range–high gain settings of the camera). The stability of the thermal camera operation was assessed using several sets of a large number of photos, acquired over three areas in the form of aerial blocks composed of parallel rows with a specific sidelap and longitudinal coverage. For these image sets, statistical parameters of thermal images such as the mean, minimum and maximum were calculated and then analyzed according to the order of registration. Analysis of photos taken every 10 m in vertical profiles up to 120 m above ground level (AGL) were also performed to show the changes in image temperature established within the reference surface. Using the established radiometric calibration, it was found that the camera maintains linearity between the observed temperature and the measured brightness temperature in the form of a digital number (DN). It was also found that the camera is sometimes unstable after being turned on, which indicates the necessity of adjusting the device’s operating conditions to external conditions for several minutes or taking photos over an area larger than the region of interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.