Abstract

BackgroundEEG studies investigating the neural networks that facilitate action observation (AO) and kinaesthetic motor imagery (KMI) have shown reduced, or desynchronized, power in the alpha (8–12 Hz) and beta (13–30 Hz) frequency bands relative to rest, reflecting efficient activation of task-relevant areas. Functional modulation of these networks through expertise in dance has been established using fMRI, with greater activation among experts during AO. While there is evidence for experience-dependent plasticity of alpha power during AO of dance, the influence of familiarity on beta power during AO, and alpha and beta activity during KMI, remain unclear. The purpose of the present study was to measure the impact of familiarity on confidence ratings and EEG activity during (1) AO of a brief ballet sequence, (2) KMI of this same sequence, and (3) KMI of non-dance movements among ballet dancers, dancers from other genres, and non-dancers.ResultsBallet dancers highly familiar with the genre of the experimental stimulus demonstrated higher individual alpha peak frequency (iAPF), greater alpha desynchronization, and greater task-related beta power during AO, as well as faster iAPF during KMI of non-dance movements. While no between-group differences in alpha or beta power were observed during KMI of dance or non-dance movements, all participants showed significant desynchronization relative to baseline, and further desynchronization during dance KMI relative to non-dance KMI indicative of greater cognitive load.ConclusionsThese findings confirm and extend evidence for experience-dependent plasticity of alpha and beta activity during AO of dance and KMI. We also provide novel evidence for modulation of iAPF that is faster when tuned to the specific motor repertoire of the observer. By considering the multiple functional roles of these frequency bands during the same task (AO), we have disentangled the compounded contribution of familiarity and expertise to alpha desynchronization for mediating task engagement among familiar ballet dancers and reflecting task difficulty among unfamiliar non-dance subjects, respectively. That KMI of a complex dance sequence relative to everyday, non-dance movements recruits greater cognitive resources suggests it may be a more powerful tool in driving neural plasticity of action networks, especially among the elderly and those with movement disorders.

Highlights

  • EEG studies investigating the neural networks that facilitate action observation (AO) and kinaesthetic motor imagery (KMI) have shown reduced, or desynchronized, power in the alpha (8–12 Hz) and beta (13–30 Hz) frequency bands relative to rest, reflecting efficient activation of task-relevant areas

  • During four functional magnetic resonance imaging scans conducted over a 34-week period, recent investigations conducted by our lab have employed both AO and KMI tasks for a novel piece of choreography that was rehearsed and performed by professional ballet dancers

  • tasks with separate 2 (Task)-related changes to alpha and beta power reported below subtract baseline in their calculations, so we will report task-related changes to individual alpha peak frequency (iAPF) relative to baseline here

Read more

Summary

Introduction

EEG studies investigating the neural networks that facilitate action observation (AO) and kinaesthetic motor imagery (KMI) have shown reduced, or desynchronized, power in the alpha (8–12 Hz) and beta (13–30 Hz) frequency bands relative to rest, reflecting efficient activation of task-relevant areas. Functional modulation of these networks through expertise in dance has been established using fMRI, with greater activation among experts during AO. Within the alpha band there is typically a maximal amplitude frequency known as the individual alpha peak frequency (iAPF) that is typically lower (or slower) in the elderly [16] and higher (or faster) during states of cognitive preparedness [17] and under increased cognitive demand [18]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.