Abstract
Microtubule-associated protein 2 (MAP2) is a neuron-specific cytoskeletal protein, enriched in dendrites and cell bodies, that helps determine dendritic shape. MAP2 regulates microtubule stability in a phosphorylation-dependent manner. The present study used immunocytochemistry with phosphoepitope-specific and phosphorylation state-independent antibodies to examine experience-dependent changes in MAP2 expression during postnatal development of the olfactory bulb. Our results demonstrate that immunoreactivity reflecting total MAP2 expression reaches a maximal level by postnatal day 20 (P20). The degree of staining for phosphoindependent forms of MAP2 is relatively unaffected by blocking odorant passage to one half the nasal epithelium via unilateral naris closure, a manipulation that attenuates physiological activity in the bulb. However, olfactory restriction from P1 dramatically reduces immunoreactivity for antibody AP18, which recognizes MAP2 only when phosphorylated on Ser136. Quantification of staining in the granule cell layer indicates that the greatest difference (64%) between control and experimental bulbs occurs after occlusion from P1 to P30 compared with animals deprived from P1 to P10 or P1 to P20. The shift in MAP2 phosphorylation occurs even when deprivation is delayed until P30, after the sensitive period for experience-dependent changes in bulb volume. Thus, the degree of the phosphorylation shift depends on the duration but not the time of onset of naris closure. Because staining for phosphorylation-independent forms of MAP2 is unchanged by naris closure, the total amount of the protein per unit area is probably not significantly altered. However, the large reductions of AP18-immunoreactivity in the bulb after olfactory restriction suggest that there is an activity-dependent stimulation of MAP2 phosphorylation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.