Abstract

In some applications of wireless sensor networks (WSN), sensor nodes are mobile while the sinks are static. In such dynamic environment, situations may arise where many sensor nodes are forwarding data through the same sink node resulting in sink overloading. One of the obvious effects of sink overloading is packet loss. It also indirectly affects the network lifetime in loss-sensitive WSN applications. Therefore, proper placement of sinks in such dynamic environment has a great impact on the performance of WSN applications. Multiple sink placement may not also work in some situations as node density may not be uniform. This paper introduces a sink placement scheme that aims at gathering experiences about sensor node density in a region at different times and based on these observations, the scheme proposes candidate sink locations in order to reduce sink overloading. Next, based upon current sensor node density pattern, sinks at these locations are scheduled to active mode, while sinks at remaining candidate locations are scheduled to sleep mode. The second phase is repeated periodically. The scheme is implemented in a simulation environment and compared with another well-known strategy, namely Geographic Sink Placement (GSP). It has been observed that the proposed scheme exhibits better performance with respect to sink overloading and packet loss in comparison with GSP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.