Abstract
We propose a new surrogate-assisted evolutionary algorithm for expensive multiobjective optimization. Two classification-based surrogate models are used, which can predict the Pareto dominance relation and <inline-formula> <tex-math notation="LaTeX">$\theta $ </tex-math></inline-formula>-dominance relation between two solutions, respectively. To make such surrogates as accurate as possible, we formulate dominance prediction as an imbalanced classification problem and address this problem using deep learning techniques. Furthermore, to integrate the surrogates based on dominance prediction with multiobjective evolutionary optimization, we develop a two-stage preselection strategy. This strategy aims to select a promising solution to be evaluated among those produced by genetic operations, taking proper account of the balance between convergence and diversity. We conduct an empirical study on a number of well-known multiobjective and many-objective benchmark problems, over a relatively small number of function evaluations. Our experimental results demonstrate the superiority of the proposed algorithm compared with several representative surrogate-assisted algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.