Abstract
The optimization of expensive black-box models is a challenging task owing to the lack of analytic gradient information and structural information about the underlying function, and also due to the sheer computational expense. A common approach to tackling such problems is the implementation of Bayesian global optimization techniques. However, these techniques often rely on surrogate modeling strategies that endow the approximation of the underlying expensive function with nonexistent features. Further, these techniques tend to push new queries away from previously queried design points, making it difficult to locate an optimum point that rests near a previous model evaluation. To overcome these issues, we propose a gold rush policy that relies on purely local information to identify the next best design alternative to query. The method employs a surrogate constructed pointwise, that adds no additional features to the approximation. The result is a policy that performs well in comparison to state of the art Bayesian global optimization methods on several benchmark problems. The policy is also demonstrated on a constrained optimization problem using a penalty method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.