Abstract

We adapted a recently proposed framework to characterize the optical response of interacting electrons in solids in order to expedite its computation without compromise in accuracy at the microscopic level. Our formulation is based on reliable parametrizations of Hamiltonians and Coulomb interactions, which allows economy and flexibility in obtaining response functions. It is suited to computing the optical response to fields of arbitrary temporal shape and strength, to arbitrary order in the field, and natively accounts for excitonic effects. We demonstrate the approach by computing the frequency-dependent susceptibilities of $\mathrm{Mo}{\mathrm{S}}_{2}$ and hexagonal BN monolayers up to the third harmonic. Grounded on a generic nonequilibrium many-body perturbation theory, this framework allows extensions to handle generic interaction models or to describe electronic processes taking place at ultrafast time scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.