Abstract

Snow is the most reflective natural surface on Earth, with an albedo (the ratio of reflected to incident light) typically between 70% and 85%. Because the albedo of snow is so high, it can be reduced by small amounts of dark impurities. Black carbon (BC) in amounts of a few tens of parts per billion (ppb) can reduce the albedo by a few percent depending on the snow grain size [Warren and Wiscombe, 1985; Clarke and Noone, 1985].An albedo reduction of a few percent is not detectable by eye and is below the accuracy of satellite observations. Nonetheless, such a reduction is significant for climate. For a typical incident solar flux of 240 watts per square meter at the snow surface in the Arctic during spring and summer, an albedo change of 1% modifies the absorbed energy flux by an amount comparable to current anthropogenic greenhouse gas forcing. As a result, higher levels of BC could cause the snow to melt sooner in the spring, uncovering darker underlying surfaces (tundra and sea ice) and resulting in a positive feedback on climate [Hansen and Nazarenko, 2004].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call