Abstract
Random fuzzy variable is mapping from a possibility space to a collection of random variables. This paper first presents a new definition of the expected value operator of a random fuzzy variable, and proves the linearity of the operator. Then, a random fuzzy simulation approach, which combines fuzzy simulation and random simulation, is designed to estimate the expected value of a random fuzzy variable. Based on the new expected value operator, three types of random fuzzy expected value models are presented to model decision systems where fuzziness and randomness appear simultaneously. In addition, random fuzzy simulation, neural networks and genetic algorithm are integrated to produce a hybrid intelligent algorithm for solving those random fuzzy expected valued models. Finally, three numerical examples are provided to illustrate the feasibility and the effectiveness of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.