Abstract

In this paper we analyze the expected time complexity of the auction algorithm for the matching problem on random bipartite graphs. We first prove that if for every non-maximum matching on graph G there exist an augmenting path with a length of at most 2l + 1 then the auction algorithm converges after N ⋅ l iterations at most. Then, we prove that the expected time complexity of the auction algorithm for bipartite matching on random graphs with edge probability and c > 1 is w.h.p. This time complexity is equal to other augmenting path algorithms such as the HK algorithm. Furthermore, we show that the algorithm can be implemented on parallel machines with processors and shared memory with an expected time complexity of . © 2014 Wiley Periodicals, Inc. Random Struct. Alg., 48, 384–395, 2016

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.