Abstract

A fundamental question in rough path theory is whether the expected signature of a geometric rough path completely determines the law of signature. One sufficient condition is that the expected signature has infinite radius of convergence, which is satisfied by various stochastic processes on a fixed time interval, including the Brownian motion. In contrast, for the Brownian motion stopped upon the first exit time from a bounded domain Ω, it is only known that the radius of convergence for the expected signature on sufficiently regular Ω is strictly positive everywhere, and that the radius of convergence is finite at some point when Ω is the 2-dimensional unit disc ([2]).In this paper, we prove that on any bounded C2,α-domain Ω⊂Rd with 2≤d≤8, the expected signature of the stopped Brownian motion has finite radius of convergence everywhere. A key ingredient of our proof is the introduction of a “domain-averaging hyperbolic development” (see Definition 4.1), which allows us to symmetrize the PDE system for the hyperbolic development of expected signature by averaging over rotated domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.