Abstract

We propose expected policy gradients (EPG), which unify stochastic policy gradients (SPG) and deterministic policy gradients (DPG) for reinforcement learning. Inspired by expected sarsa, EPG integrates across the action when estimating the gradient, instead of relying only on the action in the sampled trajectory. We establish a new general policy gradient theorem, of which the stochastic and deterministic policy gradient theorems are special cases. We also prove that EPG reduces the variance of the gradient estimates without requiring deterministic policies and, for the Gaussian case, with no computational overhead. Finally, we show that it is optimal in a certain sense to explore with a Gaussian policy such that the covariance is proportional to the exponential of the scaled Hessian of the critic with respect to the actions. We present empirical results confirming that this new form of exploration substantially outperforms DPG with the Ornstein-Uhlenbeck heuristic in four challenging MuJoCo domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.