Abstract

Non-linear probability distributions for Morison-type wave loading are used to indicate the effect of drag forces on the expected fatigue damage and the expected extreme response of quasi-statically responding (members of) offshore structures. Results are compared with those from commonly used equivalent linear methods of analysis. It is found that the expected fatigue damage and the expected extreme response based on non-linear methods are approximately equal to results from linear methods when inertia is the dominant force. However, in the event of the drag forces forming a considerable part of the total wave loading, both fatigue damage and extreme response can significantly exceed those predicted by linear methods. The difference between the two methods is quantified in terms of a drag-inertia parameter, which is directly related to the sea state under consideration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.