Abstract
Aerodynamic shape optimization must consider multiple flight conditions to obtain designs that perform well in a range of situations. However, multipoint studies have relied on heuristic choices for the flight conditions and associated weights. To eliminate the heuristics, we propose a new approach where the conditions and weights are based on actual flight data. The proposed approach minimizes the expected drag value given by a probability density function in the space of the flight conditions, which can be estimated based on data from aircraft operations. To demonstrate our approach, we perform drag minimizations of the Aerodynamic Design Optimization Discussion Group Common Research Model wing, for both single-point and multipoint cases. The multipoint cases include five- and nine-point formulations, some of which approximate the expected drag value over the specified flight-condition probability distribution. We conclude that if we focus on the resulting design, a five-point optimization with points based on the flight-condition distribution and equal weights is sufficient to obtain an optimal shape with respect to the expected drag value. However, if it is important to retain the accuracy of the expected drag integration at each optimization iteration, we recommend the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.