Abstract

This paper presents a proposal of an expected-credibility-based job scheduling method for volunteer computing (VC) systems with malicious participants who return erroneous results. Credibility-based voting is a promising approach to guaranteeing the computational correctness of VC systems. However, it relies on a simple round-robin job scheduling method that does not consider the jobs' order of execution, thereby resulting in numerous unnecessary job allocations and performance degradation of VC systems. To improve the performance of VC systems, the proposed job scheduling method selects a job to be executed prior to others dynamically based on two novel metrics: expected credibility and the expected number of results for each job. Simulation of VCs shows that the proposed method can improve the VC system performance up to 11%; It always outperforms the original round-robin method irrespective of the value of unknown parameters such as population and behavior of saboteurs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.