Abstract

Methods for hidden structure of high-dimensional binary data discovery are one of the most important challenges facing machine learning community researchers. There are many approaches in literature that try to solve this hitherto rather ill-defined task. In the present study, we propose a most general generative model of binary data for Boolean factor analysis and introduce new Expectation-Maximization Boolean Factor Analysis algorithm which maximizes likelihood of Boolean Factor Analysis solution. Using the so-called bars problem benchmark, we compare efficiencies of Expectation-Maximization Boolean Factor Analysis algorithm with Dendritic Inhibition neural network. Then we discuss advantages and disadvantages of both approaches as regards results quality and methods efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.