Abstract

Summary Expectation propagation (EP) is a widely successful algorithm for variational inference. EP is an iterative algorithm used to approximate complicated distributions, typically to find a Gaussian approximation of posterior distributions. In many applications of this type, EP performs extremely well. Surprisingly, despite its widespread use, there are very few theoretical guarantees on Gaussian EP, and it is quite poorly understood. To analyse EP, we first introduce a variant of EP: averaged EP, which operates on a smaller parameter space. We then consider averaged EP and EP in the limit of infinite data, where the overall contribution of each likelihood term is small and where posteriors are almost Gaussian. In this limit, we prove that the iterations of both averaged EP and EP are simple: they behave like iterations of Newton’s algorithm for finding the mode of a function. We use this limit behaviour to prove that EP is asymptotically exact, and to obtain other insights into the dynamic behaviour of EP, e.g. that it may diverge under poor initialization exactly like Newton’s method. EP is a simple algorithm to state, but a difficult one to study. Our results should facilitate further research into the theoretical properties of this important method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.